Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.599
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510966

RESUMO

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Assuntos
Parasitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animais , Parasitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Microcorpos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314910

RESUMO

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, as an essential metabolic process and regulator of parasite development. Little is known about the cellular responses generated when environmental glucose levels change. In both bloodstream and procyclic form (insect stage) parasites, glycosomes house most of glycolysis. These organelles are rapidly acidified in response to glucose deprivation, which likely results in the allosteric regulation of glycolytic enzymes such as hexokinase. In previous work, localizing the chemical probe used to make pH measurements was challenging, limiting its utility in other applications. This paper describes the development and use of parasites that express glycosomally localized pHluorin2, a heritable protein pH biosensor. pHluorin2 is a ratiometric pHluorin variant that displays a pH (acid)-dependent decrease in excitation at 395 nm while simultaneously yielding an increase in excitation at 475 nm. Transgenic parasites were generated by cloning the pHluorin2 open reading frame into the trypanosome expression vector pLEW100v5, enabling inducible protein expression in either lifecycle stage. Immunofluorescence was used to confirm the glycosomal localization of the pHluorin2 biosensor, comparing the localization of the biosensor to the glycosomal resident protein aldolase. The sensor responsiveness was calibrated at differing pH levels by incubating cells in a series of buffers that ranged in pH from 4 to 8, an approach we have previously used to calibrate a fluorescein-based pH sensor. We then measured pHluorin2 fluorescence at 405 nm and 488 nm using flow cytometry to determine glycosomal pH. We validated the performance of the live transgenic pHluorin2-expressing parasites, monitoring pH over time in response to glucose deprivation, a known trigger of glycosomal acidification in PF parasites. This tool has a range of potential applications, including potentially being used in high-throughput drug screening. Beyond glycosomal pH, the sensor could be adapted to other organelles or used in other trypanosomatids to understand pH dynamics in the live cell setting.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Glucose/metabolismo , Microcorpos/metabolismo , Animais Geneticamente Modificados , Concentração de Íons de Hidrogênio
3.
Proc Natl Acad Sci U S A ; 120(52): e2318274120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127982

RESUMO

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , 60422 , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ritmo Circadiano/genética , Microcorpos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo
4.
Biochem J ; 480(9): 607-627, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140888

RESUMO

Mitochondrial ß-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal ß-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and ß-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal ß-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.


Assuntos
Ácidos Graxos , Microcorpos , Microcorpos/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Fígado/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacologia
5.
Methods Mol Biol ; 2643: 33-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952176

RESUMO

Glycosomes, belonging to the sub-class of peroxisomes, are single-membrane-bound organelles of trypanosomatid parasites. Glycosomes compartmentalize mainly glycolytic and other essential metabolic pathways such as gluconeogenesis, pentose phosphate pathway, sugar nucleotide biosynthesis, etc. Since glycosomes are parasite-specific and their biogenesis is essential for the parasite survival, they have attracted a lot of interest over the years. Understanding the glycosomal enzyme composition and machinery involved in the biogenesis of this organelle requires the knowledge of the glycosomal proteome. Here we describe a method to isolate highly purified glycosomes and further enrichment of the glycosomal membrane proteins from the pro-cyclic form of Trypanosoma brucei. The isolation method is based on the controlled rupture of the cells by silicon carbide, followed by the differential centrifugation, and density gradient centrifugation. Further, the glycosomal membrane proteins are enriched from the purified glycosomes by the successive treatments with low-salt, high-salt, and alkaline carbonate buffer extractions.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Microcorpos , Peroxissomos/metabolismo , Glicólise , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo
6.
Methods Mol Biol ; 2643: 445-453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952205

RESUMO

Insect-transmitted trypanosomatid parasite infections cause life-threatening neglected tropical diseases (NTDs), including African sleeping sickness, Chagas disease and leishmaniasis. In these parasites, glycosomes are unique organelles that are essential for the parasite survival. Proper biogenesis of glycosomes is crucial to ensure correct compartmentation of the glycosomal metabolism. Genetic or chemical disruption of the glycosome biogenesis leads to a mislocalization of the glycosomal enzymes into the cytosol, which results in toxicity to the parasites. Here, we describe a detailed protocol for biochemical fractionation of Trypanosoma brucei parasites to detect mislocalization of glycosomal proteins to the cytosol. This approach utilizes increasing concentrations of digitonin that first permeabilizes the plasma membrane, followed by permeabilization of other organelles, depending on their cholesterol content. Fractionated samples can be further analyzed using immunoblotting for specific marker proteins or quantified by the specific enzyme activities.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Microcorpos , Trypanosoma brucei brucei/genética , Transporte Proteico , Proteínas de Protozoários/metabolismo
7.
Biol Chem ; 404(2-3): 195-207, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694962

RESUMO

Oxalyl-CoA synthetase from Saccharomyces cerevisiae is one of the most abundant peroxisomal proteins in yeast and hence has become a model to study peroxisomal translocation. It contains a C-terminal Peroxisome Targeting Signal 1, which however is partly dispensable, suggesting additional receptor bindings sites. To unravel any additional features that may contribute to its capacity to be recognized as peroxisomal target, we determined its assembly and overall architecture by an integrated structural biology approach, including X-ray crystallography, single particle cryo-electron microscopy and small angle X-ray scattering. Surprisingly, it assembles into mixture of concentration-dependent dimers, tetramers and hexamers by dimer self-association. Hexameric particles form an unprecedented asymmetric horseshoe-like arrangement, which considerably differs from symmetric hexameric assembly found in many other protein structures. A single mutation within the self-association interface is sufficient to abolish any higher-level oligomerization, resulting in a homogenous dimeric assembly. The small C-terminal domain of yeast Oxalyl-CoA synthetase is connected by a partly flexible hinge with the large N-terminal domain, which provides the sole basis for oligomeric assembly. Our data provide a basis to mechanistically study peroxisomal translocation of this target.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Microcorpos/química , Microcorpos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligases/análise , Ligases/metabolismo
8.
Eur J Med Chem ; 243: 114778, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36194937

RESUMO

Trypanosomiases are neglected tropical diseases caused by Trypanosoma (sub)species. Available treatments are limited and have considerable adverse effects and questionable efficacy in the chronic stage of the disease, urgently calling for the identification of new targets and drug candidates. Recently, we have shown that impairment of glycosomal protein import by the inhibition of the PEX5-PEX14 protein-protein interaction (PPI) is lethal to Trypanosoma. Here, we report the development of a novel dibenzo[b,f][1,4]oxazepin-11(10H)-one scaffold for small molecule inhibitors of PEX5-PEX14 PPI. The initial hit was identified by a high throughput screening (HTS) of a library of compounds. A bioisosteric replacement approach allowed to replace the metabolically unstable sulphur atom from the initial dibenzo[b,f][1,4]thiazepin-11(10H)-one HTS hit with oxygen. A crystal structure of the hit compound bound to PEX14 surface facilitated the rational design of the compound series accessible by a straightforward chemistry for the initial structure-activity relationship (SAR) analysis. This guided the design of compounds with trypanocidal activity in cell-based assays providing a promising starting point for the development of new drug candidates to tackle trypanosomiases.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Proteínas de Membrana , Microcorpos , Transporte Proteico/fisiologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
9.
Sci Rep ; 12(1): 14705, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038611

RESUMO

Trypanosomiases are life-threatening infections of humans and livestock, and novel effective therapeutic approaches are needed. Trypanosoma compartmentalize glycolysis into specialized organelles termed glycosomes. Most of the trypanosomal glycolytic enzymes harbor a peroxisomal targeting signal-1 (PTS1) which is recognized by the soluble receptor PEX5 to facilitate docking and translocation of the cargo into the glycosomal lumen. Given its pivotal role in the glycosomal protein import, the PEX5-PTS1 interaction represents a potential target to inhibit import of glycolytic enzymes and thus kill the parasite. We developed a fluorescence polarization (FP)-based assay for monitoring the PEX5-PTS1 interaction and performed a High Throughput Screening (HTS) campaign to identify small molecule inhibitors of the interaction. Six of the identified hits passed orthogonal selection criteria and were found to inhibit parasite growth in cell culture. Our results validate PEX5 as a target for small molecule inhibitors and provide scaffolds suitable for further pre-clinical development of novel trypanocidal compounds.


Assuntos
Receptores Citoplasmáticos e Nucleares , Trypanosoma , Proteínas de Transporte/metabolismo , Humanos , Microcorpos/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Trypanosoma/metabolismo
10.
PLoS Negl Trop Dis ; 16(3): e0010030, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312693

RESUMO

The parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. In trypanosomes, gene expression regulation depends heavily on post-transcriptional mechanisms. Both the RNA-binding protein RBP10 and glycosomal phosphoglycerate kinase PGKC are expressed only in mammalian-infective forms. RBP10 targets procyclic-specific mRNAs for destruction, while PGKC is required for bloodstream-form glycolysis. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms inhibits their proliferation. We show that the 3'-untranslated region of the RBP10 mRNA is extraordinarily long-7.3kb-and were able to identify six different sequences, scattered across the untranslated region, which can independently cause bloodstream-form-specific expression. The 3'-untranslated region of the PGKC mRNA, although much shorter, still contains two different regions, of 125 and 153nt, that independently gave developmental regulation. No short consensus sequences were identified that were enriched either within these regulatory regions, or when compared with other mRNAs with similar regulation, suggesting that more than one regulatory RNA-binding protein is important for repression of mRNAs in procyclic forms. We also identified regions, including an AU repeat, that increased expression in bloodstream forms, or suppressed it in both forms. Trypanosome mRNAs that encode RNA-binding proteins often have extremely extended 3'-untranslated regions. We suggest that one function of this might be to act as a fail-safe mechanism to ensure correct regulation even if mRNA processing or expression of trans regulators is defective.


Assuntos
Trypanosoma brucei brucei , Animais , Expressão Gênica , Mamíferos , Microcorpos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
11.
Sci Rep ; 12(1): 4766, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306507

RESUMO

Phospholipases are esterases involved in lipid catabolism. In pathogenic micro-organisms (bacteria, fungi, parasites) they often play a critical role in virulence and pathogenicity. A few phospholipases (PL) have been characterised so far at the gene and protein level in unicellular parasites including African trypanosomes (AT). They could play a role in different processes such as host-pathogen interaction, antigenic variation, intermediary metabolism. By mining the genome database of AT we found putative new phospholipase candidate genes and here we provided biochemical evidence that one of these has lipolytic activity. This protein has a unique non-canonical glycosome targeting signal responsible for its dual localisation in the cytosol and the peroxisomes-related organelles named glycosomes. We also show that this new phospholipase is excreted by these pathogens and that antibodies directed against this protein are generated during an experimental infection with T. brucei gambiense, a subspecies responsible for infection in humans. This feature makes this protein a possible tool for diagnosis.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Humanos , Lipase/genética , Lipase/metabolismo , Microcorpos/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Trypanosoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
12.
J Eukaryot Microbiol ; 69(6): e12897, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35175680

RESUMO

Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but also the organelles display remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here, we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.


Assuntos
Microcorpos , Trypanosoma , Animais , Microcorpos/metabolismo , Peroxissomos/metabolismo , Trypanosoma/metabolismo , Euglenozoários , Homeostase , Mamíferos
13.
J Biol Chem ; 298(2): 101572, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007532

RESUMO

Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal ß-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal ß-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal ß-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal ß-oxidation, to specifically induce and suppress peroxisomal ß-oxidation. Our results suggested that induction of peroxisomal ß-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal ß-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal ß-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal ß-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.


Assuntos
Colesterol , Diabetes Mellitus Experimental , Hipercolesterolemia , Fígado , Peroxissomos , Animais , Colesterol/biossíntese , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Camundongos , Microcorpos/metabolismo , Oxirredução , Peroxissomos/metabolismo
14.
Invest Ophthalmol Vis Sci ; 62(12): 26, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554178

RESUMO

Purpose: To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods: Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results: Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions: This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ferimentos Oculares Penetrantes/metabolismo , Macrófagos/metabolismo , Epitélio Pigmentado da Retina/citologia , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/citologia , Adulto , Idoso , Western Blotting , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Membrana Epirretiniana/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Microcorpos/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Descolamento Retiniano/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
15.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388147

RESUMO

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Assuntos
Glicerol Quinase/metabolismo , Glicerol/metabolismo , Hexoquinase/metabolismo , Microcorpos/enzimologia , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular
16.
mBio ; 12(3): e0037521, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34044588

RESUMO

Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography-high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones. IMPORTANCE Unusual compartmentalization of metabolic pathways within organelles is one of the most enigmatic features of trypanosomatids. These unicellular eukaryotes are the only organisms that sequestered glycolysis inside peroxisomes (glycosomes), although the selective advantage of this compartmentalization is still not clear. Trypanosomatids are also unique for the glycosomal localization of enzymes of the sugar nucleotide biosynthetic pathways, which are also present in the cytosol. Here, we showed that the cytosolic and glycosomal pathways are functional. As in all other eukaryotes, the cytosolic pathways feed glycosylation reactions; however, the role of the duplicated glycosomal pathways is currently unknown. We also showed that one of these enzymes (UGP) is imported into glycosomes by piggybacking on another glycosomal enzyme (PEPCK); they are not functionally related. The UGP/PEPCK association is unique since all piggybacking examples reported to date involve functionally related interacting partners, which broadens the possible combinations of carrier-cargo proteins being imported as hetero-oligomers.


Assuntos
Microcorpos/metabolismo , Nucleotídeos/metabolismo , Açúcares/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Citosol/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/biossíntese , Transporte Proteico , Trypanosoma brucei brucei/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética
17.
J Biol Chem ; 296: 100548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33741344

RESUMO

The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.


Assuntos
Glucose/metabolismo , Recombinação Homóloga , Microcorpos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Trypanosoma brucei brucei/metabolismo , Células Cultivadas , Flavinas/metabolismo , Succinato Desidrogenase/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
18.
PLoS Negl Trop Dis ; 15(2): e0009132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592041

RESUMO

In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.


Assuntos
Microcorpos/metabolismo , Nucleotídeos/biossíntese , Açúcares/metabolismo , Trypanosoma brucei brucei/metabolismo , Estágios do Ciclo de Vida/fisiologia , Microcorpos/enzimologia , Trypanosoma brucei brucei/enzimologia
19.
Biochem Soc Trans ; 49(1): 29-39, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439256

RESUMO

Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.


Assuntos
Kinetoplastida/citologia , Microcorpos/fisiologia , Animais , Kinetoplastida/genética , Kinetoplastida/metabolismo , Kinetoplastida/ultraestrutura , Microcorpos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo
20.
Parasitol Res ; 120(4): 1421-1428, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33098461

RESUMO

Trypanosoma cruzi, the causative agent of Chagas' disease, belongs to the Trypanosomatidae family. The parasite undergoes multiple morphological and metabolic changes during its life cycle, in which it can use both glucose and amino acids as carbon and energy sources. The glycolytic pathway is peculiar in that its first six or seven steps are compartmentalized in glycosomes, and has a two-branched auxiliary glycosomal system functioning beyond the intermediate phosphoenolpyruvate (PEP) that is also used in the cytosol as substrate by pyruvate kinase. The pyruvate phosphate dikinase (PPDK) is the first enzyme of one branch, converting PEP, PPi, and AMP into pyruvate, Pi, and ATP. Here we present a kinetic study of PPDK from T. cruzi that reveals its hysteretic behavior. The length of the lag phase, and therefore the time for reaching higher specific activity values is affected by the concentration of the enzyme, the presence of hydrogen ions and the concentrations of the enzyme's substrates. Additionally, the formation of a more active PPDK with more complex structure is promoted by it substrates and the cation ammonium, indicating that this enzyme equilibrates between the monomeric (less active) and a more complex (more active) form depending on the medium. These results confirm the hysteretic behavior of PPDK and are suggestive for its functioning as a regulatory mechanism of this auxiliary pathway. Such a regulation could serve to distribute the glycolytic flux over the two auxiliary branches as a response to the different environments that the parasite encounters during its life cycle.


Assuntos
Doença de Chagas/parasitologia , Piruvato Ortofosfato Diquinase/metabolismo , Trypanosoma cruzi/enzimologia , Monofosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Glucose/metabolismo , Glicólise , Concentração de Íons de Hidrogênio , Cinética , Microcorpos/enzimologia , Fosfoenolpiruvato/metabolismo , Piruvato Ortofosfato Diquinase/química , Piruvatos/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...